# ÉCOLE DOCTORALE PARIS-EST

Sciences, Ingénierie et Environnement

# Insights into degradation mechanism of Orange G by photo-Fenton oxidation: Determination of Optimal conditions and identification of by-products

Jean-Baptiste Tarkwa<sup>1,2</sup>, Nihal Oturan<sup>1</sup>, Acayanka Elie<sup>2</sup>, Laminsi Samuel<sup>2</sup>, Mehmet A. Oturan<sup>1</sup>

<sup>1</sup> Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
<sup>2</sup> Université de Yaoundé I, Laboratoire de Chimie Physique et Analytique Appliquée, UYI, P.O.BOX : 812 Yaoundé, Cameroun.

jean-baptiste.tarkwa@univ-paris-est.fr

## Introduction

Azo dyes have been widely used in several industries and are recognized as toxic, carcinogenic and non-biodegradable. Several advanced oxidation processes, such as Fenton, electro-Fenton or photo-Fenton have been used for the degradation of dyes with good removal efficiency [1-2]. Despite these achievements, just few ones highlighted the fate of degradation by-products. This work is proposed as a breakthrough in the well-established degradation mechanism of OG oxidation by photo-Fenton process.

#### **Orange G oxidation**

As the processing time increase, the absorbance related to the azo-bond at 478 nm decreases, with almost complete disappearance after 3 min of treatment, suggesting its fast cleavage and OG oxidation (Fig. 2a). Nevertheless, the observed degradation is not related to effective mineralization because only 9.5% TOC removal is achieved after 15 min. To improve the process efficiency, an optimization of operational parameters is carried out.

# Effect of initial H<sub>2</sub>O<sub>2</sub> concentration

As shown in Fig.3a., an increase of concentration from 1 to 6 mM, is favorable for OG degradation as more hydroxyl radical is produced. Fig.3b displays the mineralization results with an enhancement of TOC removal from 61.07% to 92.17% after 3 h of treatment. Further increase of H<sub>2</sub>O<sub>2</sub> amount decreased the rate of degradation kinetics due to hydroxyl radicals consumption by H<sub>2</sub>O<sub>2</sub> excess according to the following equation :  $H_2O_2 + HO^* \rightarrow HO_2^* + H_2O$  (1)

For instance, when using 8 mM of  $H_2O_2$ , the TOC removal is dropped to 89.74%. Thus, 6 mM is used for the next steps of our investigation.

#### Effect of initial Fe<sup>3+</sup> concentration

Fig. 4a shows that complete degradation of OG is obtained at 0.4 mM of Fe<sup>3+</sup>. In Fig.4b. TOC removal is improved from 82.94 to 92.17% by increasing Fe<sup>3+</sup> concentration from 0.1 to 0.4 mM. Using 0.6 mM Fe<sup>2+</sup> leads a decrease in TOC removal, due to the scavenging effect of the excess of photo-generated Fe<sup>2+</sup> as :  $Fe^{2+} + HO^{\bullet} \rightarrow Fe^{3+} + HO^{-}$  (2)

#### **Effect of initial Fenton reagents ratio**

The above mentioned side reactions (1) and (2) decrease photo-Fenton efficiency, due to their high rate constants ( $k_1 = 2.7 \times 10^7 M^{-1}$ . s<sup>-1</sup> and  $k_2 = 3.0 \times 10^8 M^{-1}$ .s<sup>-1</sup>). To minimize their occurrence an experimental Fenton reagents ratio is established using apparent rate constants. From Fig.5a. given analytical equations are kapp<sub>H202</sub> = 0.0376 \* ([H<sub>2</sub>O<sub>2</sub>]/[Fe<sup>3+</sup>]) + 0.4659 and  $k_{app \ Fe^{3+}} = -0.0074^*$  ( $[H_2O_2]/$ [Fe<sup>3+</sup>]) + 1.0658. The intersection of these straights line correspond to a ratio of 13.33, which is founded to be the optimum value. From Fig.5b. 4.95, 65.77 and 95.93 % of TOC removal are obtained after 3h of treatment using respectively UV alone, UV/H<sub>2</sub>O<sub>2</sub> (6 mM) and photo-Fenton at the optimal established ratio.



#### **Results and discussions**



Fig.2. OG discoloration (a) and mineralization (b) as a function of treatment time.[  $Fe^{3+}]_{\ 0}$  = 0.2 mM; [H\_2O\_2]  $_0$  = 4 mM











**Materials and Methods** 

# Chemicals

Orang G dye, hydrogen peroxide (30%) and iron sulfate  $Fe_2(SO_4)_3$  were purchased from Sigma Aldrich (France). Experimental setup

- (1) Low pression mercury vapour lamp emitting at 253.7 nm (2) Quartz tube
- (3) Reaction vessel
- (4) Pump for sample homogenisation
- (5)Cooling tap water
- (6)Sampling

### **By-products analysis**

Fig.6a. presents identified short chains carboxylic acid using 0.2 mM of Fe<sup>3+</sup>, 3 mM of H<sub>2</sub>O<sub>2</sub> and 0.2 mM of OG. The fast conversion of these acids is observed, suggesting their mineralization into CO<sub>2</sub>, H<sub>2</sub>O and inorganic anions. In Fig 6b. the concentration of released anions are followed under optimal conditions of degradation using 0.1 mM of OG, with the expected sulfate concentration of 0.2 mM for a total conversion of sulfur. The other identified byproducts like aromatics intermediates and the techniques for their identification are highlighted in table 1.

| Table 1: Identified by-products |                   |              |                      |
|---------------------------------|-------------------|--------------|----------------------|
| N°                              | Chemical Name     | Techniques   | Retention time (min) |
| 1                               | Phtalic anhydride | HPLC         | 2.80                 |
| 2                               | Phtalic acid      | HPLC         | 2.95                 |
| 3                               | Phenol            | GC-MS        | 14.37                |
| 4                               | Hydroquinone      | HPLC         | 3.48                 |
| 5                               | P-Benzoquinone    | HPLC / GC-MS | 4.01                 |
| 6                               | Oxamic acid       | HPLC         | 14.94                |
| 7                               | Oxalic acid       | HPLC         | 11.72                |
| 8                               | Fumaric acid      | HPLC         | 16.74                |
| 9                               | Glyoxylic acid    | HPLC         | 10.27                |
| 10                              | Formic acid       | HPLC         | 14.10                |
| 11                              | Acetic acid       | GC-MS        | 4.11                 |



**Conclusion :** The optimum ratio of Fenton reagents for photo-Fenton OG oxidation is founded to be 13.33. Under this condition complete degradation is registered after 4 min and 95.93 % of mineralization after 3 h of treatment. By-products identification were carried and a plausible mechanism oxidation is proposed.

Fig. 6. (a) Carboxylic acids and (b) released anions profiles of

Acknowledgements : The authors are grateful to the "Service de Cooperation et d'Action Culturelle " of Cameroon French Embassy for their Financial support.

concentration during Photo-Fenton process

**References :** 1-S. Bouafia-Chergui, N. Oturan, H. Khalaf, and M. A. Oturan, "Parametric study on the effect of the ratios [H<sub>2</sub>O<sub>2</sub>]/[Fe<sup>3+</sup>] and [H<sub>2</sub>O<sub>2</sub>]/[substrate] on the photo-Fenton degradation of cationic azo dye basic blue 41.," *J. Environ.Sci. Heal. Part A*, vol. 45, no. 5, 2010.

2-E. Guivarch, S. Trevin, C. Lahitte, and M. a. Oturan, "Degradation of azo dyes in water by Electro-Fenton process," Environ. Chem. Lett., vol. 1, no. 1, 2003.

t (h)